Constant-Rank Condition and Second-Order Constraint Qualification
نویسندگان
چکیده
The constant-rank condition for feasible points of nonlinear programming problems was defined by Janin (Math. Program. Study 21:127–138, 1984). In that paper, the author proved that the constant-rank condition is a first-order constraint qualification. In this work, we prove that the constant-rank condition is also a secondorder constraint qualification. We define other second-order constraint qualifications.
منابع مشابه
A second-order sequential optimality condition associated to the convergence of optimization algorithms
Sequential optimality conditions have recently played an important role on the analysis of the global convergence of optimization algorithms towards first-order stationary points, justifying their stopping criteria. In this paper we introduce a sequential optimality condition that takes into account second-order information and that allows us to improve the global convergence assumptions of sev...
متن کاملOn the Constant Positive Linear Dependence Condition and Its Application to SQP Methods
In this paper, we introduce a constant positive linear dependence condition (CPLD), which is weaker than the Mangasarian–Fromovitz constraint qualification (MFCQ) and the constant rank constraint qualification (CRCQ). We show that a limit point of a sequence of approximating Karush–Kuhn–Tucker (KKT) points is a KKT point if the CPLD holds there. We show that a KKT point satisfying the CPLD and ...
متن کاملA relaxed constant positive linear dependence constraint qualification and applications
In this work we introduce a relaxed version of the constant positive linear dependence constraint qualification (CPLD) that we call RCPLD. This development is inspired by a recent generalization of the constant rank constraint qualification from Minchenko and Stakhovski that was called RCR. We show that RCPLD is enough to ensure the convergence of an augmented Lagrangian algorithm and asserts t...
متن کاملSensitivity Analysis of the Value Function for Parametric Mathematical Programs with Equilibrium Constraints
In this paper, we perform sensitivity analysis of the value function for parametric mathematical programs with equilibrium constraints (MPEC). We show that the value function is directionally differentiable in every direction under the MPEC relaxed constant rank regularity condition, the MPEC no nonzero abnormal multiplier constraint qualification, and the restricted inf-compactness condition. ...
متن کاملOn a Conjecture in Second-Order Optimality Conditions
In this paper we deal with optimality conditions that can be verified by a nonlinear optimization algorithm, where only a single Lagrange multiplier is avaliable. In particular, we deal with a conjecture formulated in [R. Andreani, J.M. Mart́ınez, M.L. Schuverdt, “On second-order optimality conditions for nonlinear programming”, Optimization, 56:529–542, 2007], which states that whenever a local...
متن کامل